Retrieval-based Language Models

Sewon Min

University of Washington
shmsw25.github.io

CPSC 488/588 • Fall 2023 • Yale University
Adapted from ACL 2023 Tutorial w/ Akari Asai, Zexuan Zhong, \& Danqi Chen

Language Models
 $P\left(x_{n} x_{1}, x_{2}, \cdots, x_{n-1}\right)$

Language Models
 $$
P\left(x_{n} x_{1}, x_{2}, \cdots, x_{n-1}\right)
$$

Harry felt Greenback collapse against ... on the floor as a jet of

Language Models
 $$
P\left(x_{n} x_{1}, x_{2}, \cdots, x_{n-1}\right)
$$

Harry felt Greenback collapse against ... on the floor as a jet of

Language Models

$$
P\left(x_{n} x_{1}, x_{2}, \cdots, x_{n-1}\right)
$$

Harry felt Greenback collapse against ... on the floor as a jet of

Retrieval-based language models (LMs)

(also called semiparametric or nonparametric LMs)

Retrieval-based language models (LMs)

(also called semiparametric or nonparametric LMs)

Retrieval-based language models (LMs)

(also called semiparametric or nonparametric LMs)

Overview

Why Retrieval-based LMs?

8
Tell me about Meta Platform.
I don't have any information about a
company called Meta Platforms. It
is possible that the company is ...

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.
I don't have any information about a company called Meta Platforms. It is possible that the company is ...

Retrieval Augmentation

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.I don't have any information about a company called Meta Platforms. It
is possible that the company is

Retrieval Augmentation

New Retrieval-based LMs

"Avada Kedavra!" A jet of green light issued \qquad .. move and a flash of green light and
. just as a jet of red light blasted from Harry's
. is operated or driven by a jet of water. \square

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.
I don't have any information about a company called Meta Platforms. It
is possible that the company is

New Retrieval-based LMs

"Avada Kedavra!" A jet of green light issued
 move and a flash of green light and just as a jet of red light blasted from Harry's \square . is operated or driven by a jet of water. \square

Retrieval Augmentation

Open Problems

Scaling datastore not just parameters?

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.I don't have any information about a company called Meta Platforms. It
is possible that the company is

New Retrieval-based LMs

"Avada Kedavra!" A jet of green light issued
 move and a flash of green light and just as a jet of red light blasted from Harry's is operated or driven by a jet of water.

Retrieval Augmentation

Open Problems

Scaling datastore not just parameters?

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Rarities of concepts/facts

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Standard LMs: Need to remember everything

Rarities of concepts/facts

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Rarities of concepts/facts

Standard LMs: Need to remember everything

Retrieval-based LMs: Can look-up anytime

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

0
List 4 important papers authored by Geoffrey Hinton

Why Retrieval-based LMs?

New dimension in data use \& better at long-tail

Can grow \& update w/o additional training

Provide data attribution

List 4 important papers authored by Geoffrey Hinton
Geoffrey Hinton is a renowned computer scientist ... Here are four important papers authored by him:

1. "Learning Internal Representations by Error Propagation" (with D. E. Rumelhart and R. J. Williams) - This paper, published in 1986, ..
2. "Deep Boltzmann Machines" (with R. Salakhutdinov) - Published in 2009,
3. "Deep Learning" (with Y. Bengio and A. Courville) - Published as a book in 2016, ...
4. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) - Published in 2017, this paper introduced the Transformer model,...

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.
I don't have any information about a company called Meta Platforms. It
is possible that the company is

New Retrieval-based LMs

"Avada Kedavra!" A jet of green light issued
 move and a flash of green light and

[^0]is operated or driven by a jet of water. \square

Retrieval Augmentation

Open Problems

Scaling datastore not just parameters?

Language Models (w/o retrieval)

Language Models (w/ retrieval)

Language Models (w/ retrieval)

Retrieval augmentation

Retrieval augmentation: Overview

- Inference
- Training
- Key results

Retrieval augmentation: Overview

- Inference
- Training
- Key results

(I) Retrieve stage

Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ...

Voldemort's want just as a jet of red light
"The Boy Who Lived." He saw the mouth move and a flash of green.

(I) Retrieve stage

```
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ...
```

Voldemort's want just as a jet of red light

(I) Retrieve stage

$\boldsymbol{X}=$ Harry felt Greenback collapse \ldots on the floor as a jet of

(I) Retrieve stage

datastore ERow wiv

$\boldsymbol{X}=$ Harry felt Greenback collapse.. on the floor as a jet of

> Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ...

Voldemort's want just as a jet of red light
"The Boy Who Lived." He saw the mouth move and a flash of green...

(I) Retrieve stage

(I) Retrieve stage

(2) Read stage

Retrieval results (ranked)

Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ...

Voldemort's want just as a jet of red light
"The Boy Who Lived." He saw the mouth move and a flash of green ...

(2) Read stage

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Retrieval results (ranked)
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ... Voldemort's wand just as a jet of red light blasted from Harry's ...
$+$
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Retrieval results (ranked)
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ..

Voldemort's want just as a jet of red light ...
"The Boy Who Lived." He saw the mouth move and a flash of green ...
$+$
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Retrieval results (ranked)
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ..

Voldemort's want just as a jet of red light ...
"The Boy Who Lived." He saw the mouth move and a flash of green ...

Voldemort's wand just as a jet of red light blasted from Harry's ...
$+$
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Retrieval results (ranked)
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ..

Voldemort's want just as a jet of red light ...
"The Boy Who Lived." He saw the mouth move and a flash of green ...

Voldemort's wand just as a jet of red light blasted from Harry's ...
$+$
Harry felt Greenback collapse against him ... a jet of

Very simple
(You can use a black-box LM like an API!)

(2) Read stage

How to use multiple text blocks?

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Retrieval results (ranked)
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from ..

Voldemort's want just as a jet of red light ...
"The Boy Who Lived." He saw the mouth move and a flash of green ...

Voldemort's wand just as a jet of red light blasted from Harry's ...
$+$
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

How to use multiple text blocks?

(2) Read stage

How to use multiple text blocks?

Retrieval results (ranked)

Voldemort's want just as a jet of red light ...

(2) Read stage

How to use multiple text blocks? 1) Concatenation

Voldemort's want just as a jet of red light
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from "The Boy Who Lived." He saw the mouth move and a flash of green

(2) Read stage

How to use multiple text blocks? 1) Concatenation

Voldemort's want just as a jet of red light
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from "The Boy Who Lived." He saw the mouth move and a flash of green
+
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

How to use multiple text blocks? 1) Concatenation

Voldemort's want just as a jet of red light
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from "The Boy Who Lived." He saw the mouth move and a flash of green
$+$
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

How to use multiple text blocks? 1) Concatenation

Voldemort's want just as a jet of red light
Voldemort cried, "Avada Kedavra!" A jet of green light issued ...from "The Boy Who Lived." He saw the mouth move and a flash of green
$+$
Harry felt Greenback collapse against him ... a jet of

- Simple

Increase the inference cost \&

Bounded by the maximum
length limit of the LM

(2) Read stage

How to use multiple text blocks? 2) Ensembling

(2) Read stage

How to use multiple text blocks? 2) Ensembling

(2) Read stage

How to use multiple text blocks? 2) Ensembling

(2) Read stage

How to use multiple text blocks? 2) Ensembling

(2) Read stage

How to use multiple text blocks? 2) Ensembling

(2) Read stage

How to use multiple text blocks? 3) Reranking

(2) Read stage

How to use multiple text blocks? 3) Reranking

Retrieval results (ranked)

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Voldemort's wand just as a jet of red light blasted from Harry's
+
Harry felt Greenback collapse against him ... a jet of

(2) Read stage

How to use multiple text blocks? 3) Reranking

Retrieval results (ranked)

Voldemort cried, "Avada Kedavra!" A jet of green light issued from
Voldemort's wand just as a jet of red light blasted from Harry's
+
Harry felt Greenback collapse against him ... a jet of

\therefore Increase the inference cost

Key results

Key results

Perplexity: The lower the better

- No Retrieval In-Context RALM (BM25)

Key results

Retrieval helps over all sizes of LMs

Retrieval augmentation: Overview

- Inference
- Step I: Retrieve
- Step 2: Read (Generate)
- Optionally, with multiple passages: Concatenation, Ensembling, Reranking
- Training
- Key results

Retrieval augmentation: Overview

- Inference
- Step I: Retrieve
- Step 2: Read (Generate)
- Optionally, with multiple passages: Concatenation, Ensembling, Reranking
- Training
- Key results

How to train it?

Retrieval Model

trained in isolation
\square
LM
trained in isolation

How to train it?

Retrieval Model

trained in isolation

How to train it?

How to train it?

Independent training

Retrieval Model

trained in isolation

How to train it?

Independent training

trained in isolation

Joint training

How to train it?

Independent training

trained in isolation

Joint training

Sequential training
trained in isolation
Retrieval Model \downarrow
LM
trained conditionally

How to train it?

Independent training

Joint training

Sequential training

How to train it?

Independent training

Joint training
(Skipping details)

Sequential training
trained in isolation
Retrieval Model \downarrow

LM
trained conditionally
or
trained conditionally
Retrieval Model
\uparrow
LM
trained in isolation

Sequential training: freeze LM, tune retrieval

Sequential training: freeze LM, tune retrieval

Sequential training: freeze LM, tune retrieval

Harry felt Greenback collapse against him ... on the floor as a jet of

Frozen
LM

LM

Sequential training: freeze LM, tune retrieval

Sequential training: freeze retrieval, tune LM

Sequential training: freeze retrieval, tune LM

Harry felt Greenback collapse against him ... on the floor as a jet of

Ground truth token: green

Sequential training: freeze retrieval, tune LM

Voldemort was ready. As Harry
Voldemort was ready. As Harry
shouted,"Expelliarmus!"
shouted,"Expelliarmus!"
Voldemort cried,"Avada
Voldemort cried,"Avada
Kedavra!'' A jet of green light
Kedavra!'' A jet of green light

Sequential training: freeze retrieval, tune LM

Sequential training: freeze retrieval, tune LM

$$
\text { Maximize } P(y x)=\sum_{z \in \mathscr{X}} P_{\mathrm{ret}}(z x) \xrightarrow[P_{\mathrm{LM}}(y x, z)]{\text { Updated }}
$$

Summary:Training

Independent training

Joint training
(Skipping details)

Sequential training
trained in isolation
Retrieval Model \downarrow
LM
trained conditionally
or
trained in isolation
Retrieval Model

LM
trained conditionally

Summary:Training

Independent training

Joint training
(Skipping details)

Sequential training
trained in isolation
Retrieval Model

LM
trained conditionally
or
trained in isolation
Retrieval Model

LM
trained conditionally

Summary:Training

Independent training

Joint training
(Skipping details)

Sequential training
trained in isolation
Retrieval Model \downarrow
LM
trained conditionally
or
trained in isolation
Retrieval Model

LM
trained conditionally

Good enough if you want minimal effort

Principle way but still
open question
Good middle ground

Retrieval augmentation: Overview

- Inference
- Step I: Retrieve
- Step 2: Read (Generate)
- Optionally, with multiple passages: Concatenation, Ensembling, Reranking
- Training
- Independent training, Joint training, Sequential training
- Key results

Retrieval augmentation: Overview

- Inference
- Step I: Retrieve
- Step 2: Read (Generate)
- Optionally, with multiple passages: Concatenation, Ensembling, Reranking
- Training
- Independent training, Joint training, Sequential training
- Key results

Question Answering

Question Answering

Chinchilla (70B) ATLAS (Few; 11B) ATLAS (Full; 11B)

Question Answering

Question Answering

Full-shot fine-tuning further improves performance

\square Chinchilla (70B)
ATLAS (Few; 11B)

- ATLAS (Full; 11B)

Question Answering

What is Kathy Saltzman's occupation?

Question Answering

Gains increase as the rarity increases (even over GPT-3!)

Reasoning (MMLU)

Reasoning (MMLU)

Code generation

TLDR (NL —> bash)

Code generation

TLDR (NL —> bash)

Large gains over both CodeT5 \& CodeX

Can update effectively

Can update effectively

Can update effectively

Can update effectively

Instruction-tuning

Instruction-tuning

Retrieval augmentation: Summary

- Inference
- Step I: Retrieve
- Step 2: Read (Generate)
- Optionally, with multiple passages: Concatenation, Ensembling, Reranking
- Training
- Independent training, Joint training, Sequential training
- Key results
- QA, Reasoning, Code generation, etc
- Update effectively
- You can also do instruction tuning

Retrieval Augmented LMs are already being used!

Chat GPT Extension

:\# Perplexity

Retrieval Augmented LMs are already being used!

$3 \beta \cdots$

Toronto is a vibrant and diverse city with many attractions and activities to suit different tastes and preferences. Here are some suggestions for creating an itinerary for exploring Toronto over two days:

- Day 1: Start your day with a visit to the CN Tower, the iconic landmark that offers panoramic views of the city and beyond ${ }^{1}$. You can also experience the thrill of walking on the glass floor or the EdgeWalk, the world's highest hands-free walk ${ }^{1}$. Next, head to the nearby $\mathbf{S t}$. Lawrence Market, one of the world's best food markets, where you can sample a variety of cuisines and local specialties ${ }^{2}$. After lunch, take a stroll along Queen West, a trendy neighborhood with eclectic shops, galleries, cafes and street art ${ }^{3}$. In the evening, enjoy a show at one of the many theaters or comedy clubs in the Entertainment District, or catch a game at the Scotiabank Arena if you're a sports fan.
- Day 2: Explore the history and culture of Toronto at the Royal Ontario Museum, one of the largest and most comprehensive museums in North America, featuring exhibits on art, natural history, world cultures and more 4 . Then, hop on a ferry to the Toronto Islands, a group of islands that offer a relaxing escape from the city, with beaches, parks, trails and amusement rides ${ }^{3}{ }^{5}$. You can also rent a bike or kayak to explore the islands at your own pace. For dinner, head to Chinatown, one of the largest and most vibrant in North America, where you can find a variety of Asian cuisines and shops ${ }^{3}$.

I hope this helps you plan your trip to Toronto. Have fun! (c)

Learn more:

1. cntower.ca
2. travel.usnews.com
3. bing.com
4. rom.on.ca 5.tripadvisor.com

Retrieval Augmented LMs are already being used!

Toronto is a vibrant and diverse city with many attractions and activities to suit different tastes and preferences. Here are some suggestions for creating an itinerary for exploring Toronto over two days:

- Day 1: Start your day with a visit to the CN Tower, the iconic landmark that offers panoramic views of the city and beyond ${ }^{1}$. You can also experience the thrill of walking on the glass floor or the EdgeWalk, the world's highest hands-free walk $\frac{1}{\sim}$ Next, head to the nearby $\mathbf{S t}$. Lawrence Market, one of the world's best food markets, where you can sample a variety of cuisines and local specialties ${ }^{2}$. After lunch, take a stroll along Queen West, a trendy neighborhood with eclectic shops, galleries, cafes and street art ${ }^{3}$. In the evening, enjoy a show at one of the many theaters or comedy clubs in the Entertainment District, or catch a game at the Scotiabank Arena if you're a sports fan.
- Day 2: Explore the history and culture of Toronto at the Royal Ontario Museum, one of the largest and most comprehensive museums in North America, featuring exhibits on art, natural history, world cultures and more ${ }^{4}$. Then, hop on a ferry to the Toronto Islands, a group of islands that offer a relaxing escape from the city, with beaches, parks, trails and amusement rides $\pi^{3 / 5}$. You can also rent a bike or kayak to explore the islands at your own pace. For dinner, head to Chiratown, one of the largest and most vibrant in Nortb/America, where you can find a variety of Asian cuisings and shops ${ }^{3}$
\qquad
- 1

Learn more:

1. cntower.ca
2. rom.on.ca
3. travel.usnews.com
4. bing.com
5. rom.on.ca 5.tripadvisor.com

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.
I don't have any information about a company called Meta Platforms. It
is possible that the company is

New Retrieval-based LMs

Retrieval Augmentation

Open Problems

Scaling datastore not just parameters?

New Retrieval-based LMs

- New Methodology I ——Designing a new Transformer
- New Methodology 2 - Designing a new Softmax
- New LM Design — Mitigating fairness \& legality issues

New Retrieval-based LMs

1. How to overcome sequence length limit issue?
2. How to overcome efficiency issue when retrieving many blocks, frequently?

- New Methodology I - Designing a new Transformer
- New Methodology 2 - Designing a new Softmax
- New LM Design - Mitigating fairness \& legality issues

RETRO (Borgeaud et al. 2021)

RETRO (Borgeaud et al. 202I)

New Transformers layers, designed to read many text blocks, frequently, more efficiently

RETRO (Borgeaud et al. 2021)

$\boldsymbol{x}=$ World Cup 2022 was the last with 32 teams, before the increase to

RETRO (Borgeaud et al. 2021)

$$
\begin{aligned}
& \mathbf{x}=\text { World Cup } 2022 \text { was/the last with } 32 \text { teams, } / \text { before the increase to } \\
& \qquad \mathbf{x}_{1} \\
& \mathbf{x}_{2}
\end{aligned}
$$

RETRO (Borgeaud et al. 2021)

$\boldsymbol{x}=$ World Cup 2022 was/the last with 32 teams, $/$ before the increase to
\mathbf{x}_{1}
\mathbf{x}_{2}

RETRO (Borgeaud et al. 2021)

$\boldsymbol{x}=$ World Cup 2022 was/the last with 32 teams, $/$ before the increase to
$\mathbf{x}_{1} \quad \mathbf{x}_{3}$

RETRO (Borgeaud et al. 202I)

$\boldsymbol{x}=$ World Cup 2022 was/the last with 32 teams, $/$ before the increase to
\mathbf{x}_{1}
\mathbf{x}_{2}

RETRO (Borgeaud et al. 2021)

$\boldsymbol{x}=$ World Cup 2022 was/the last with 32 teams, $/$ before the increase to
$\mathbf{x}_{1} \quad \mathbf{x}_{3}$

Regular Transformers

RETRO Transformers

Chunked Cross Attention

Chunked Cross Attention

Outputs from the previous layer H

Chunked Cross Attention

Outputs from the previous layer H

Chunked Cross Attention

Chunked Cross Attention

Outputs from the previous layer H
Cross-attention can be computed in parallel, and be re-used

Chunked Cross Attention

Cross-attention can be computed in parallel, and be re-used

Chunked Cross Attention

Cross-attention can be computed in parallel, and be re-used

Chunked Cross Attention

\checkmark Cross-attention can be computed in parallel, and be re-used

Chunked Cross Attention

Cross-attention can be computed in parallel, and be re-used

Results

Moder					

Results

Model	Retrieval Set	\#Database tokens	Perplexity: The lower the better		
			\#Database keys	Valid	Test
Adaptive Inputs (Baevski and Auli, 2019)	-	-	-	17.96	18.65
Spalm (Yogatama et al., 2021)	Wikipedia	3B	3B	17.20	17.60
kNN-LM (Khandelwal et al., 2020)	Wikipedia	3B	3B	16.06	16.12
Megatron (Shoeybi et al., 2019)	-	-	-		10.81
Baseline transformer (ours)	-		-	21.53	22.96
kNN-LM (ours)	Wikipedia	4B	4B	18.52	19.54
Retro	Wikipedia	4B	0.06B	18.46	18.97
Retro	C4	174B	2.9B	12.87	10.23
Retro	MassiveText (1\%)	18B	0.8B	18.92	20.33
Retro	MassiveText (10\%)	179B	4B	13.54	14.95
Retro	MassiveText (100\%)	1792B	28B	3.21	3.92

Results

Model	Retrieval Set	\#Database tokens	Perplexity: The lower the better		
			\#Database keys	Valid	Test
Adaptive Inputs (Baevski and Auli, 2019)	-	-	-	17.96	18.65
Spalm (Yogatama et al., 2021)	Wikipedia	3B	3B	17.20	17.60
kNN-LM (Khandelwal et al., 2020)	Wikipedia	3B	3B	16.06	16.12
Megatron (Shoeybi et al., 2019)	-	-	-	-	10.81
Baseline transformer (ours)	-	-	-	21.53	22.96
kNN-LM (ours)	Wikipedia	4B	4B	18.52	19.54
Retro	Wikipedia	4B	0.06B	18.46	18.97
Retro	C4	174B	2.9B	12.87	10.23
Retro	MassiveText (1\%)	18B	0.8B	18.92	20.33
Retro	MassiveText (10\%)	179B	4B	13.54	14.95
Retro	MassiveText (100\%)	1792B	28B	3.21	3.92

Significant improvements by retrieving from I. 8 trillion tokens

 (We'll talk more about the importance of the datastore size later)
Results

Model	Retrieval Set	\#Database tokens	Perplexity: The lower the better		
			\#Database keys	Valid	Test
Adaptive Inputs (Baevski and Auli, 2019)	-	-	-	17.96	18.65
Spalm (Yogatama et al., 2021)	Wikipedia	3B	3B	17.20	17.60
kNN-LM (Khandelwal et al., 2020)	Wikipedia	3B	3B	16.06	16.12
Megatron (Shoeybi et al., 2019)	-	-	-		10.81
Baseline transformer (ours)	-		-	21.53	22.96
kNN-LM (ours)	Wikipedia	4B	4B	18.52	19.54
Retro	Wikipedia	4B	0.06B	18.46	18.97
Retro	C4	174B	2.98	12.87	10.23
Retro	MassiveText (1\%)	18B	0.8 B	18.92	20.33
Retro	MassiveText (10\%)	179B	4B	13.54	14.95
Retro	MassiveText (100\%)	1792B	28B	3.21	3.92

Significant improvements by retrieving from I. 8 trillion tokens

 (We'll talk more about the importance of the datastore size later)
New Retrieval-based LMs: Overview

- New Methodology I — Designing a new Transformer
- New attention layers to incorporate more blocks (RETRO)
- Possibly combine with long-range Transformers
- New Methodology 2 - Designing a new Softmax
- New LM Design - Mitigating fairness \& legality issues

New Retrieval-based LMs: Overview

- New Methodology I — Designing a new Transformer
- New attention layers to incorporate more blocks (RETRO)
- Possibly combine with long-range Transformers

Solve length limit issue in retrieval augmentation

- New Methodology 2 - Designing a new Softmax
- New LM Design — Mitigating fairness \& legality issues

New Retrieval-based LMs: Overview

- New Methodology I — Designing a new Transformer
- New attention layers to incorporate more blocks (RETRO)
- Possibly combine with long-range Transformers
- New Methodology 2 - Designing a new Softmax
- New LM Design — Mitigating fairness \& legality issues

kNN-LM

Test Context	Target
x	
Obama's birthplace is	$?$

kNN-LM

			softmax	(y)	
Test Context x	Target	Representation $q=f(x)$		Hawaii Illinois	0.2
Obama's birthplace is	?	0000	

kNN-LM

.. Obama was senator for Illinois from 1997 to 2005, Barack is Married to Michelle and their first daughter, ... Obama was born in Hawaii, and graduated from Columbia University. ... Obama is a native of Hawaii,

Test Context x	Target	Representation $q=f(x)$
Obama's birthplace is	$?$	000

kNN-LM

Training Contexts c_{i}	Targets v_{i}
Obama was senator for	Illinois
Barack is married to	Michelle
Obama was born in	Hawaii
\ldots	\ldots
Obama is a native of	Hawaii

.. Obama was senator for Illinois from 1997 to 2005, Barack is Married to Michelle and their first daughter, ... Obama was born in Hawaii, and graduated from Columbia University. ... Obama is a native of Hawaii,

Test Context	Target	Representation $x=f(x)$
Obama's birthplace is	$?$	000

kNN-LM

Training Contexts c_{i}	Targets v_{i}	Representations $k_{i}=f\left(c_{i}\right)$
Obama was senator for	Illinois	000
Barack is married to	Michelle	0000
Obama was born in	Hawaii	0000
		O
Obama is a native of	Hawaii	000

Test Context	Target	Representation $x=f(x)$
Obama's birthplace is	$?$	000

kNN-LM

$\#$ of vectors $=\#$ of tokens in the corpus $(>\mid B)$

Training Contexts c_{i}	Targets v_{i}	Representations $k_{i}=f\left(c_{i}\right)$
was senator for	Illinois	,
Barack is married to	Michelle	0000
Obama was born in	Hawaii	0000
Obama is a native of	Hawaii	(000)

Test Context	Target	Representation $x=f(x)$
Obama's birthplace is	$?$	000

kNN-LM

Which tokens in a datastore are close to the next token?

kNN-LM

Which tokens in a datastore are close to the next token?

Which vectors in a datastore are close to the vector we have?

kNN-LM

Training Contexts c_{i}	Targets v_{i}	Representations $k_{i}=f\left(c_{i}\right)$	Distances $d_{i}=d\left(q, k_{i}\right)$
Obama was senator for Barack is married to Obama was born in Obama is a native of	Illinois Michelle Hawaii Hawaii	$\begin{gathered} 0000 \\ 0,000 \\ 0000 \\ \ldots \\ 0000 \end{gathered}$	$\begin{gathered} 4 \\ 100 \\ 5 \\ \ldots \\ 3 \end{gathered}$
Test Context x	Target	Representation $q=f(x)$	
Obama's birthplace is	?	0000	

kNN-LM

kNN-LM

Nonparamatric softmax

kNN-LM

Nonparamatric softmax

$$
P_{k N N}\left(\begin{array}{ll}
y & x) \propto \sum_{(k, v) \in \mathscr{D}} \llbracket[v=y] e^{\operatorname{sim}(k, x)} \\
\end{array}\right.
$$

kNN-LM

Nonparamatric softmax

$$
P_{k \mathrm{NN}}(y x) \propto \sum_{(k, v) \in \mathscr{D}} \square[v=y] e^{\operatorname{sim}(k, x)} \quad \operatorname{sim}(k, x)=-d(\operatorname{Enc}(k), \operatorname{Enc}(x))
$$

kNN-LM

Nonparamatric softmax

$$
P_{k \mathrm{NN}}(y x) \propto \sum_{(k, v) \in \mathscr{X}} \square[v=y] e^{\operatorname{sim}(k, x)} \quad \operatorname{sim}(k, x)=-d(\operatorname{Enc}(k), \underline{\operatorname{Enc}(x))}
$$

kNN-LM

Nonparamatric softmax

$$
P_{k \mathrm{NN}}(y x) \propto \sum_{(k, v) \in \mathscr{D}} \square[v=y] e^{\operatorname{sim}(k, x)} \quad \operatorname{sim}(k, x)=-d(\underline{\operatorname{Enc}(k)}, \underline{\operatorname{Enc}(x))}
$$

kNN-LM

Nonparamatric softmax

kNN-LM

Nonparamatric softmax

$$
P_{k \mathrm{NN}-\mathrm{LM}}\left(\begin{array}{ll}
y & x)=(1-\lambda) P_{\mathrm{LM}}\left(\begin{array}{ll}
y & x
\end{array}\right)+\lambda P_{k \mathrm{NN}}\left(\begin{array}{ll}
y & x
\end{array}\right) .
\end{array}\right.
$$

kNN-LM

Nonparamatric softmax

$$
P_{k \mathrm{NN}-\mathrm{LM}}(y x)=(1-\lambda) P_{\mathrm{LM}}(y x)+\lambda P_{k \mathrm{NN}}\left(\begin{array}{ll}
y & x)
\end{array}\right.
$$

kNN-LM

$$
P_{k \mathrm{NN}-\mathrm{LM}}\left(\begin{array}{ll}
y & x)=(1-\lambda) P_{\mathrm{LM}}\left(\begin{array}{ll}
(& x)
\end{array}\right) \lambda P_{k \mathrm{NN}}\left(\begin{array}{ll}
y & x
\end{array}\right) .
\end{array}\right.
$$

kNN-LM

Why nonparametric softmax?

Training contexts	Targets
$10 / 10$, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Why nonparametric softmax?

Dense vector space

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Why nonparametric softmax?

Why nonparametric softmax?

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Why nonparametric softmax?

Training contexts	Targets
$10 / 10$, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Dense vector space

Training contexts	Targets
$10 / 10$, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections ... one of the	torch

Why nonparametric softmax?

Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

Nonparametric-only, Phrase-level (NPM)

 (If you can train the model...)
just as a jet of red light blasted from Harry's ..

Voldemort cried, "Avada Kedavra!' 'A jet of green light issued.
"The Boy Who Lived." He saw the mouth move and a flash of green light, and everything was gone.
... is operated or driven by a jet of water.

Pick up a flat rock, skip it across Green River

Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

Nonparametric-only, Phrase-level (NPM)

(If you can train the model...)

NPM: Fact probing

NPM: Fact probing

No-retrieval LMs are better as they get larger

NPM: Fact probing

Retrieval augmentation helps

NPM: Fact probing

NPM is more parameter efficient

NPM: Predicting rare entities

NPM: Predicting rare entities

NPM: Predicting rare entities

NPM: Predicting rare entities

NPM outperforms by a larger margin as the rarity increases

New Retrieval-based LMs: Overview

- New Methodology I — Designing a new Transformer
- New attention layers to incorporate more blocks (RETRO)
- Possibly combine with long-range Transformers
- New Methodology 2 - Designing a new Softmax
- Two softmaxes together: kNN-LM
- Nonparametric softmax only, phrase-level: NPM
- New LM Design - Mitigating fairness \& legality issues

New Retrieval-based LMs: Overview

- New Methodology I — Designing a new Transformer
- New attention layers to incorporate more blocks (RETRO)
- Possibly combine with long-range Transformers
- New Methodology 2 - Designing a new Softmax
- Two softmaxes together: kNN-LM
- Nonparametric softmax only, phrase-level: NPM
- New LM Design — Mitigating fairness \& legality issues

Common practice

Web crawl

Common practice

Common practice

\because Legal risk in training on copyrighted data

Common practice

\because Legal risk in training on copyrighted data

New proposal: SILO

SILO Attribution Example

Test input:

include '../lib/admin.defines.php'; include '../lib/admin.module.access.php'; include '../lib/admin.smarty.php';
if (! has_right (

Continuation: [AC]X_BILLING)) \{ Header ..

SILO Attribution Example

Continuation: [AC]×_BILLING)) \{ Header ..

SILO Attribution Example

SILO Attribution Example

New Retrieval-based LMs: Summary

- New Methodology I — Designing a new Transformer
- New attention layers to incorporate more blocks (RETRO)
- New Methodology 2 - Designing a new Softmax
- Two softmaxes together: kNN-LM
- Nonparametric softmax only, phrase-level: NPM
- New LM Design — Mitigating fairness \& legality issues
- Train on permissive text \rightarrow place copyrighted text into a datastore

Overview

Why Retrieval-based LMs?

Tell me about Meta Platform.
I don't have any information about a company called Meta Platforms. It
is possible that the company is

New Retrieval-based LMs

"Avada Kedavra!" A jet of green light issued
$-$ move and a flash of green light and just as a jet of red light blasted from Harry's \square is operated or driven by a jet of water.

Retrieval Augmentation

Open Problems

Scaling datastore not just parameters?

Summary

What?
How?
Why?

Summary

Summary

Summary

Summary

What?

Summary

Why?

New dimension in improving LMs!

Summary

What?

x : test input
y : model prediction to x

How?

Retrieval augmentation

New Transformers

Nonparametric Softmax

Why?

> New dimension in improving LMs!

Update \& scale without additional training

Summary

Why?

New dimension in improving LMs!

Update \& scale without additional training

Summary

slide $96 \downarrow$

Test input:

include '../lib/admin.defines.php';
include "../lib/admin.module.access.php';
include '../lib/admin.smarty.php';
if (! has_right (
Continuation: [AC]X_BILLING)) \{ Header .

Why?

> New dimension in improving LMs!

Update \& scale without additional training

Top-I retrieved context:

* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://wmw.gnu.org/licenses/.
$\rightarrow{ }^{*}$
*

if (! has_right (
[AC]X_ACCESS)) $\{$ Header

Summary

slide $96 \downarrow$

Test input:

include '../lib/admin.defines.php';
include '../lib/admin.module.access.php';
include '../lib/admin.smarty.php';
if (! has_right (
Continuation: [AC]X_BILLING)) \{ Header .

Top-I retrieved context:

* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*

**/
if (! has_right (
[AC]X_ACCESS)) $\{$ Header

Why?

> New dimension in improving LMs!

Update \& scale without additional training

Provide data attribution

New opportunities in fairness \& legality

Summary

How?

Retrieval
augmentation

New Transformers

Nonparametric Softmax

New opportunities in fairness \& legality

Open questions

Open question: Scaling retrieval-based LMs

Open question: Scaling retrieval-based LMs

A small LM + a large datastore \approx a large (no-retrieval) LM?

vs.

Open question: Scaling retrieval-based LMs

A small $\mathrm{LM}+$ a large datastore \approx a large (no-retrieval) LM?

vs.

A new dimension in scaling!

Open question: Scaling retrieval-based LMs

A small LM + a large datastore \approx a large (no-retrieval) LM?

vS.

	\# of parameters	\# of tokens
KNN-LM (Khandelwal et al., 2020)	250 M	$\leq 3 \mathrm{~B}$
NPM (Min et al., 2023)	350 M	1 B
Atlas (Izacard et al., 2022)	11 B	$\sim 30 \mathrm{~B}$
RETRO (Borgeaud et al., 2021)	7 B	2 T
\quad REPLUG (Shi et al., 2023)	$\leq 175 \mathrm{~B}$	$\sim 5 \mathrm{~B}$

Open question: Scaling retrieval-based LMs

A small LM + a large datastore \approx a large (no-retrieval) LM?

vS.

	\# of parameters	\# of tokens
KNN-LM (Khandelwal et al., 2020)	250 M	$\leq 3 \mathrm{~B}$
NPM (Min et al., 2023)	350 M	1 B
Atlas (Izacard et al., 2022)	11 B	$\sim 30 \mathrm{~B}$
RETRO (Borgeaud et al., 2021)	7 B	2 T
\quad REPLUG (Shi et al., 2023)	$\leq 175 \mathrm{~B}$	$\sim 5 \mathrm{~B}$

Open question: Scaling retrieval-based LMs

Scaling law?

Open question: Scaling retrieval-based LMs

Scaling law?

Loss as a function of:

- Training data size
-\# model parameters

Scaling law for parametric LMs (Kalpan et al., 2020; Hoffman et al., 2022)

Open question: Scaling retrieval-based LMs

Scaling law?

Loss as a function of:

- Training data size
-\# model parameters
+ Datastore sizes?

Scaling law for parametric LMs (Kalpan et al., 2020; Hoffman et al., 2022)

Open question: Runtime efficiency

Efficiency of similarity search

Open question: Runtime efficiency

Efficiency of similarity search

Measured on NVIDIA RTX 3090 GPU (Zhong et al., 2022)
with a FAISS indexer (Johnson et al., 2021) with 32 CPUs

[^1]
Open question: Runtime efficiency

Efficiency of similarity search

Measured on NVIDIA RTX 3090 GPU (Zhong et al., 2022)
with a FAISS indexer (Johnson et al., 2021) with 32 CPUs

[^2]
Open question: Runtime efficiency

Efficiency of similarity search

Measured on NVIDIA RTX 3090 GPU (Zhong et al., 2022)
with a FAISS indexer (Johnson et al., 2021) with 32 CPUs

- >12 times slower with approximate nearest neighbor search
- Efficient similarity search is an active research area (in conjunction with systems, databases, \& algorithms)

Open question: Retrieval-based LMs for applications

Open question: Retrieval-based LMs for applications

Open-ended text generation?

Open question: Retrieval-based LMs for applications

Open-ended text generation?

Better decoding algorithms? Better adaptation methods?

Open questions: Summary

Open questions: Summary

- What is the best architecture \& training method for retrieval-based LMs in practice?

Open questions: Summary

- What is the best architecture \& training method for retrieval-based LMs in practice?
- How to scale the datastore to trillions of tokens? [Scaling law]

Open questions: Summary

- What is the best architecture \& training method for retrieval-based LMs in practice?
- How to scale the datastore to trillions of tokens? [Scaling law]
- How to improve runtime efficiency?

Open questions: Summary

- What is the best architecture \& training method for retrieval-based LMs in practice?
- How to scale the datastore to trillions of tokens? [Scaling law]
- How to improve runtime efficiency?
- How to design new decoding or adaptation methods for downstream tasks (e.g., open-ended text generation)!

Open questions: Summary

- What is the best architecture \& training method for retrieval-based LMs in practice?
- How to scale the datastore to trillions of tokens? [Scaling law]
- How to improve runtime efficiency?

- How to design new decoding or adaptation methods for downstream tasks (e.g., open-ended text generation)!

Q \& A

Thank you for listening!

Check out ACL 2023 Tutorial on this topic (3-hour): https://acl2023-retrieval-Im.github.io/ Please leave feedback at tinyurl.com/sewon-min-talk

Extra slides (from QnA)

Validating Model Output to be Factual

Bridget Moynahan is an American actress, model and producer. She is best known for her roles in Grey's Anatomy, I, Robot and Blue Bloods. She studied acting at the American Academy of Dramatic Arts, and ...

Atomic facts

- Bridget Moynahan is American
- Bridget Moynahan is an actress
- Bridget Moynahan is a model.
- Bridget Moynahan is a producer. K
- She is best known for her roles in Grey's Anatomy.
- She is best known for her roles in I, Robot.
66.7\%
- She is best known for her roles in Blue Bloods.
- She studied acting.
- She studied at the American Academy of Dramatic Arts. X.

Gains from retrieval w.r.t. frequency

There has been mixed results about whether retrieval hurts when it comes to popular entities/facts, e.g., the top graph shows it does hurt in (short-form) question answering, and the bottom graph shows retrieval always help even with frequent entities in long-form text generation. These results are likely to depend on exact setup, e.g., the task, base LMs, and datastore, etc.

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"

Research on information retrieval

Retrieval-including training the encoder, getting embeddings and indexing - is an active area of research. Recommend Pyserini (https://github.com/castorini/pyserini) for a set of references and also try some of them out easily.

State-of-the-art retrieval-based LMs?

- If you want the model that you can use right now - retrieval-augmentation
- Partially because you can leverage the state-of-the-art models that industry built with no modification
- You should use state-of-the-art retrieval (BM25, Contriever or GTR) and state-of-the-art LM (LLAMA, ChatGPT)
- Easiest: with "independent training", optionally with reranking
- Doesn't mean retrieval-augmentation is the "best" under the scenario of fair comparison, e.g., when the model has exact same parameters \& is trained on the exactly same data
- The SILO paper shows kNN-LM (kNN in the graph) outperforms retrieval-augmentation (RiC in the graph), both when training data==datastore (right) and when training data!=datastore (left)
- However, this is based on language modeling perplexity. Downstream task eval is still an open Q.

[^0]: just as a jet of red light blasted from Harry's

[^1]: LM: 250M
 Datastore: 100M

[^2]: LM: 250M
 Datastore: 100M

