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Can grow & update w/o 
additional training Provide data attributionNew dimension in data 

use & better at long-tail

List 4 important papers authored by Geoffrey Hinton

4. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) - Published in 2017, 
this paper introduced the Transformer model,…

Geoffrey Hinton is a renowned computer scientist … Here are four important 
papers authored by him:

1. "Learning Internal Representations by Error Propagation" (with D. E. Rumelhart 
and R. J. Williams) - This paper, published in 1986, ..

2. "Deep Boltzmann Machines" (with R. Salakhutdinov) - Published in 2009, ..

3. "Deep Learning" (with Y. Bengio and A. Courville) - Published as a book in 2016, …
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LM
Frozen

LM
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Ground truth token: green

Shi et al. 2023. “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Sequential training: freeze retrieval, tune LM
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Retrieval Model
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Retrieval Model
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LM
trained in isolation
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(Skipping details)

Quite difficult, essentially 
iterative sequential training

Gus et al. 2020. “REALM: Retrieval-Augmented Language Model Pre-Training” 
Izcard et al. 2022. “Atlas: Few-shot Learning with Retrieval Augmented Language Models”



Summary: Training

36

Independent training Joint training Sequential training

Good enough if you want 
minimal effort

Principle way but still 
open question Good middle ground
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trained in isolation
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(Skipping details)



Retrieval augmentation: Overview

• Inference

•Step 1: Retrieve

•Step 2: Read (Generate)

•Optionally, with multiple passages: Concatenation, Ensembling, Reranking

•Training

• Independent training, Joint training, Sequential training 

•Key results
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Question Answering

Retrieval Augmentation
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Question Answering
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Izcard et al. “Atlas: Few-shot Learning with Retrieval Augmented Language Models”Retrieval Augmentation
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Question Answering

ATLAS largely outperforms 7x larger 
LMs in few-shot  
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Full-shot fine-tuning further improves 
performance
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Izcard et al. “Atlas: Few-shot Learning with Retrieval Augmented Language Models”Retrieval Augmentation
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Question Answering

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"

What is Kathy Saltzman’s occupation?
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Gains increase as the rarity increases (even over GPT-3!)

Question Answering

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"

What is Kathy Saltzman’s occupation?
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Reasoning (MMLU)

Retrieval Augmentation
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Reasoning (MMLU)

Acc. 

+3.5

30

43

55

68

80

MMLU NQ

Base LM (CodeX)
+ REPLUG LSR

Large performance gain 
from base LM

+4.6

Shi et al. 2023. “REPLUG: Retrieval-Augmented Black-Box Language Models”Retrieval Augmentation
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Zhou et al. 2023. “DocPrompting: Generating Code by Retrieving the Docs”Retrieval Augmentation
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CodeX

TLDR (NL —> bash)

Code generation

Zhou et al. 2023. “DocPrompting: Generating Code by Retrieving the Docs”Retrieval Augmentation
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Swapping test datastore only 
gives strong performance

Izcard et al. “Atlas: Few-shot Learning with Retrieval Augmented Language Models”Retrieval Augmentation
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Retrieval augmentation: Summary

• Inference

•Step 1: Retrieve

•Step 2: Read (Generate)

•Optionally, with multiple passages: Concatenation, Ensembling, Reranking

•Training

• Independent training, Joint training, Sequential training

•Key results

•QA, Reasoning, Code generation, etc

•Update effectively

•You can also do instruction tuning

46Retrieval Augmentation
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Why Retrieval-based LMs?

Tell me about Meta Platform.

I don’t have any information about a 
company called Meta Platforms. It 
is possible that the company is …

Retrieval Augmentation

New Retrieval-based LMs Open Problems

Retrieval

LM

x

y

x

… “Avada Kedavra!” A jet of green light issued …

… move and a flash of green light and .

… just as a jet of red light blasted from Harry’s

… is operated or driven by a jet of water.
…

x LM

Scaling datastore not just parameters?

datastore
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•New Methodology 1 — Designing a new Transformer 

•New Methodology 2 — Designing a new Softmax

•New LM Design — Mitigating fairness & legality issues
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51New Retrieval-based LMs — new Transformers

• New Methodology 1 — Designing a new Transformer  

•New Methodology 2 — Designing a new Softmax

•New LM Design — Mitigating fairness & legality issues

1. How to overcome sequence length limit issue? 
2. How to overcome efficiency issue when 

retrieving many blocks, frequently?
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RETRO (Borgeaud et al. 2021)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”New Retrieval-based LMs — new Transformers
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RETRO (Borgeaud et al. 2021)

New Transformers layers, designed to read many text blocks, frequently, more efficiently

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”New Retrieval-based LMs — new Transformers
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was the last with 32 teams, before the increase to

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was the last with 32 teams, before the increase to
x1 x2 x3
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Retrieval 
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x3

p1
1 . . . pk
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2 . . . pk
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3 . . . pk

3

(  text blocks per split)k

New Retrieval-based LMs — new Transformers

How to incorporate them into Transformers?

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Regular Transformers

EMB

x1

x2

x3

ATTN FFN
HEAD

Transformers blocks (xL)

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO Transformers

EMB

x1

x2

x3

ATTN CCA FFN
HEAD

Chunked Cross Attention (CCA)

RETRO blocks (xL)

E1 E2 E3

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel, and be re-used
New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”



60

Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel, and be re-used

If  you generated until here

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel, and be re-used

If  you generated until here

You get this

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel, and be re-used

If  you generated until here

You get this

and go through this

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

This part can be re-used

If  you generated until here

New Retrieval-based LMs — new Transformers

Cross-attention can be computed in parallel, and be re-used
Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Results
Perplexity: The lower the better

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Results

Significant improvements by retrieving from 1.8 trillion tokens
(We’ll talk more about the importance of the datastore size later)

Perplexity: The lower the better

New Retrieval-based LMs — new Transformers Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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Results

Significant improvements by retrieving from 1.8 trillion tokens
(We’ll talk more about the importance of the datastore size later)
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63New Retrieval-based LMs

•New Methodology 1 — Designing  a new Transformer 

• New attention layers to incorporate more blocks (RETRO) 

•Possibly combine with long-range Transformers

•New Methodology 2 — Designing a new Softmax

•New LM Design — Mitigating fairness & legality issues
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64New Retrieval-based LMs

•New Methodology 1 — Designing  a new Transformer 

•New attention layers to incorporate more blocks (RETRO)

• Possibly combine with long-range Transformers 

•New Methodology 2 — Designing a new Softmax

•New LM Design — Mitigating fairness & legality issues

Solve length limit issue in retrieval 
augmentation 

(and probably simpler than RETRO?!)



New Retrieval-based LMs: Overview

65New Retrieval-based LMs — new Softmax

•New Methodology 1 — Designing  a new Transformer 

•New attention layers to incorporate more blocks (RETRO)

•Possibly combine with long-range Transformers

• New Methodology 2 — Designing a new Softmax 

•New LM Design — Mitigating fairness & legality issues
Nonparametric softmax?



kNN-LM

66New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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67New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

softmax



kNN-LM
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… Obama was senator for Illinois from 1997 to 
2005, …. Barack is Married to Michelle and their 
first daughter, … Obama was born in Hawaii, and 
graduated from Columbia University. … Obama is a 
native of Hawaii, ….

New Retrieval-based LMs

datastore

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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69New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

# of vectors = # of tokens in the corpus (>1B)
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Which tokens in a datastore are close to the next token?

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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Which tokens in a datastore are close to the next token?

Which vectors in a datastore are close to the vector we have?

=

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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74New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

Nonparamatric softmax
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PkNN(y |x) ∝ ∑
(k,v)∈𝒟

𝕀[v = y]esim(k,x)

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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PkNN(y |x) ∝ ∑
(k,v)∈𝒟

𝕀[v = y]esim(k,x) sim(k, x) = − d(Enc(k), Enc(x))

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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(k,v)∈𝒟

𝕀[v = y]esim(k,x) sim(k, x) = − d(Enc(k), Enc(x))

distance function

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

Nonparamatric softmax



kNN-LM

75

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

Nonparamatric softmax

softmax



kNN-LM

75

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

Nonparamatric softmax

softmax



kNN-LM

75

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

Nonparamatric softmax

softmax



kNN-LM

75

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x) : hyperparameterλ

New Retrieval-based LMs Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"
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You are permitted to bring a torch
A group of infections … one of the torch
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"The Boy Who Lived." He saw the 
mouth move and a flash of green 
light, and everything was gone.
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Voldemort cried, “Avada Kedavra!” A jet of green light issued …
"The Boy Who Lived." … a flash of green light and everything was gone.

Voldemort’s wand just as a jet of red light blasted from Harry’s
… is operated or driven by a jet of water.

…

Harry felt Greenback collapse against him … on the 
floor as a jet of _____ came flying toward him.

datastore

(If you can train the model…)

Min et al. 2023. Nonparametric Masked Language Modeling
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No-retrieval LMs are better as they get larger
New Retrieval-based LMs Min et al. 2023. Nonparametric Masked Language Modeling



NPM: Fact probing

85

Retrieval augmentation helps
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NPM is more parameter efficient
New Retrieval-based LMs Min et al. 2023. Nonparametric Masked Language Modeling
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NPM outperforms by a larger margin as the rarity increases

frequent rare frequent rare

New Retrieval-based LMs Min et al. 2023. Nonparametric Masked Language Modeling
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x y

Training

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"New Retrieval-based LMs — SILO
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x y

Permissively-licensed Copyrighted Private

Legal risk in training on copyrighted data Failure in crediting to data creators

Training

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"New Retrieval-based LMs — SILO
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x y

Permissively-licensed

Training

Very low legal risk, 
but poor performance 

(small-size data, domain shift)

Significantly improve generalization

•Likely defense fair use  
•Provide copyright notice 
•Allow credits (or payment) to data creators

Can trace inherent attribution

Can modify the datastore at any time
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x y

Permissively-licensed

Training

Very low legal risk, 
but poor performance 

(small-size data, domain shift)

Significantly improve generalization

•Likely defense fair use  
•Provide copyright notice 
•Allow credits (or payment) to data creators

Can trace inherent attribution

Can modify the datastore at any time
•Support removal of data at any time 
•Better alignment with GDPR

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"New Retrieval-based LMs — SILO
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SILO Attribution Example

Test input: 
include ‘../lib/admin.defines.php’;
include ‘../lib/admin.module.access.php’;
include ‘../lib/admin.smarty.php’;
if (! has_right ( Continuation: [AC]X_BILLING)) { Header …

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"New Retrieval-based LMs — SILO
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SILO Attribution Example

Test input: 
include ‘../lib/admin.defines.php’;
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Top-1 retrieved token (in kNN-LM): 
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
**/
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Continuation: [AC]X_BILLING)) { Header …

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"New Retrieval-based LMs — SILO



96

SILO Attribution Example

Test input: 
include ‘../lib/admin.defines.php’;
include ‘../lib/admin.module.access.php’;
include ‘../lib/admin.smarty.php’;
if (! has_right (

Top-1 retrieved token (in kNN-LM): 
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
**/
if (! has_right (
        [AC]X_ACCESS)) { Header …

Continuation: [AC]X_BILLING)) { Header …

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"New Retrieval-based LMs — SILO



New Retrieval-based LMs: Summary

97

•New Methodology 1 — Designing  a new Transformer 

•New attention layers to incorporate more blocks (RETRO)

•New Methodology 2 — Designing a new Softmax

•Two softmaxes together: kNN-LM

•Nonparametric softmax only, phrase-level: NPM

•New LM Design — Mitigating fairness & legality issues

•Train on permissive text  place copyrighted text into a datastore→

New Retrieval-based LMs — SILO
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Why Retrieval-based LMs?

Tell me about Meta Platform.

I don’t have any information about a 
company called Meta Platforms. It 
is possible that the company is …

Retrieval Augmentation

New Retrieval-based LMs Open Problems

Retrieval

LM

x

y

x

… “Avada Kedavra!” A jet of green light issued …

… move and a flash of green light and .

… just as a jet of red light blasted from Harry’s

… is operated or driven by a jet of water.
…

x LM

Scaling datastore not just parameters?

datastore
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A small LM + a large datastore  a large (no-retrieval) LM?≈

vs.

datastore

A new dimension in scaling!

Min et al. 2023. "SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore"

The lower the better
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+ Datastore sizes?

Scaling law for parametric LMs (Kalpan et al., 2020; Hoffman et al., 2022)

•Training data size

•# model parameters

Loss as a function of:
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Efficiency of similarity search

•  12 times slower with approximate nearest neighbor search>

Guo et al. 2020. “Accelerating Large-Scale Inference with Anisotropic Vector Quantization”

•  Efficient similarity search is an active research area (in 
conjunction with systems, databases, & algorithms)
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Open question: Retrieval-based LMs for applications
Open-ended text generation?
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Wang et al. 2023. “kNN-LM Does Not Improve Open-ended Text Generation”
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Open question: Retrieval-based LMs for applications

Better decoding algorithms? Better adaptation methods?

Open-ended text generation?
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Wang et al. 2023. “kNN-LM Does Not Improve Open-ended Text Generation”
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Q & A
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Thank you for listening!

Check out ACL 2023 Tutorial on this topic (3-hour): https://acl2023-retrieval-lm.github.io/
      Please leave feedback at tinyurl.com/sewon-min-talk

https://acl2023-retrieval-lm.github.io/
https://tinyurl.com/sewon-min-talk


Extra slides (from QnA)
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Validating Model Output to be Factual

115Min et al. 2023. “FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation”

- Bridget Moynahan is American. 
- Bridget Moynahan is an actress. 
- Bridget Moynahan is a model. 
- Bridget Moynahan is a producer. 
- She is best known for her roles in Grey’s Anatomy. 
- She is best known for her roles in I, Robot. 
- She is best known for her roles in Blue Bloods. 
- She studied acting. 
- She studied at the American Academy of Dramatic Arts. 
- …

Atomic facts

Bridget Moynahan is an American actress, model and producer. She is best 
known for her roles in Grey’s Anatomy, I, Robot and Blue Bloods. She studied 

acting at the American Academy of Dramatic Arts, and …

66.7%



Gains from retrieval w.r.t. frequency

116Min et al. 2023. “FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation”

Mallen et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"

There has been mixed results about whether retrieval hurts when it 
comes to popular entities/facts, e.g., the top graph shows it does hurt in 
(short-form) question answering, and the bottom graph shows retrieval 
always help even with frequent entities in long-form text generation. 
These results are likely to depend on exact setup, e.g., the task, base 
LMs, and datastore, etc.

(no-retrieval) (no-retrieval) (retrieval-augmented)



Research on information retrieval

117

Retrieval—including training the encoder, getting embeddings and indexing—is an active area of research. 
Recommend Pyserini (https://github.com/castorini/pyserini) for a set of references and also try some of 
them out easily.

https://github.com/castorini/pyserini


State-of-the-art retrieval-based LMs?

118

• If you want the model that you can use right now — retrieval-augmentation 
• Partially because you can leverage the state-of-the-art models that industry built with no modification 
• You should use state-of-the-art retrieval (BM25, Contriever or GTR) and state-of-the-art LM (LLAMA, ChatGPT) 
• Easiest: with “independent training”, optionally with reranking 

• Doesn’t mean retrieval-augmentation is the “best” under the scenario of fair comparison, e.g., when the model has 
exact same parameters & is trained on the exactly same data 

• The SILO paper shows kNN-LM (kNN in the graph) outperforms retrieval-augmentation (RiC in the graph), both 
when training data==datastore (right) and when training data!=datastore (left) 

• However, this is based on language modeling perplexity. Downstream task eval is still an open Q.


